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SUMMARY

This article deals with the study of the development and application of the high-order upwind
ADBQUICKEST scheme, an adaptative bounded version of the QUICKEST for unsteady problems
(Commun. Numer. Meth. Engng 2007; 23:419–445), employing both linear and nonlinear convection term
discretization. This scheme is applicable to a wide range of computational fluid dynamics problems,
where transport phenomena are of special importance. In particular, the performance of the scheme is
assessed through an extensive numerical simulation study of advection–diffusion problems. The scheme,
implemented in the context of finite difference methodology, combines a good approximation of shocks
(or discontinuities) with a good approximation of the smooth parts of the solutions. In order to assess the
performance of the scheme, seven problems are solved, namely (a) advection of scalars; (b) non-linear
viscous Burgers equation; (c) Euler equations of gas dynamics; (d) Newtonian flow in a channel; (e)
axisymmetric Newtonian jet flow; (f) axisymmetric non-Newtonian (generalized Newtonian) flow in
a pipe; and (g) collapse of a fluid column. The numerical experiments clearly show that the scheme
provides more consistent solutions than those found in the literature. From the study, the flexibility and
robustness of the ADBQUICKEST scheme is confirmed by demonstrating its capability to solve a variety
of linear and nonlinear problems with and without discontinuous solutions. Copyright q 2008 John Wiley
& Sons, Ltd.
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2 V. G. FERREIRA ET AL.

1. INTRODUCTION

The development of upwind differencing schemes for approximating linear or non-linear convec-
tive terms in advection–diffusion equations has been a subject of concern for more than three
decades. In the case of the hydrodynamic flow equations (see, e.g. [1]), the classical one-sided
first-order upwind (donor cell low-order) and Lax–Friedrichs finite difference schemes [2–4] can
generate significant errors; the most serious is the production of a diffusive effect (numerical false
diffusion [5, 6]) that augments the effects of viscosity. On the other hand, standard second- or
higher-order difference schemes, such as central difference (CD), second-order upwind (SOU) [7],
quadratic upstream interpolation for convective kinematics (QUICK) [8] and Lax–Wendroff [9],
have been popular techniques for approximating these non-linear advection terms. However, the
use of these schemes in the proximity of discontinuities typically introduces dispersive effects that
lead to non-physical, spurious oscillations (numerical oscillations) that corrupt the solution and
lead to numerical instability [3, 10]. As a consequence, this has led to the development of sophis-
ticated high-order finite difference upwind schemes for the simulation of convection–diffusion
problems.

The oscillatory behavior of the numerical solution around the discontinuities and extremal
points can be prevented by using more sophisticated high-order upwind schemes that have
the following attractive properties: (i) they are at least second-order accurate in regions where
the solution is smooth; (ii) they have a monotonic behavior near the discontinuities (bound-
edness); (iii) they do not spread the solution by introducing too much numerical false diffu-
sion, (iv) they do not need artificial viscosity; (v) they take into account the propagation of
physical information (‘wind’ or ‘wave’ direction); and (vi) they incorporate the one-sided first-
order upwind scheme in their formulation (avoidance of wiggling). Representative examples
of schemes that attempt to meet these requirements are variable-order non-oscillatory scheme
(VONOS) [11], hybrid-linear parabolic approximation (HLPA) [12], sharp and monotonic algo-
rithm for realistic transport (SMART) [13], weighted-average coefficient ensuring boundedness
(WACEB) [14], convergent and universally bounded interpolation scheme for the treatment of
advection (CUBISTA) [15] and, more recently, our adaptative bounded version of the QUICK
with estimated streaming terms (QUICKEST) [16], called here ADBQUICKEST, the object of this
study.

In this paper, the effectiveness of the ADBQUICKEST scheme has been evaluated by means of
seven distinct test cases. These are (a) advection of scalars; (b) one-dimensional (1D) non-linear
viscous Burgers equation; (c) 1D Euler equations of gas dynamics; (d) 2D Newtonian flow in a
channel; (e) axisymmetric Newtonian jet flow; (f) axisymmetric generalized Newtonian flow in
a pipe, and (g) 2D/3D collapse of a fluid column. The numerical results were compared with
analytic and experimental results, and/or very accurately computed numerical results.

This study has two specific objectives: the first is to highlight the ADBQUICKEST scheme
as an effective new methodology for solving advection–diffusion problems and the second is to
extend the applicability of the previous results [16, 17] to problems that are sufficiently difficult
and wide-ranging.

The organization of this study is as follows. In Section 2, the ADBQUICKEST scheme used
in our numerical calculations is described. In Section 3, some numerical test problems and their
numerical solutions are presented. Section 4 contains our conclusions and discusses the future
direction of this work.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
DOI: 10.1002/fld



ASSESSMENT OF A HIGH-ORDER FINITE DIFFERENCE UPWIND SCHEME 3

2. DESCRIPTION OF THE ADBQUICKEST SCHEME

Consider the 1D advection of a scalar

�u
�t

+a
�u
�x

= 0 with a=const.>0

u(x,0) = u0(x), x ∈R

(1)

together with appropriate periodic boundary conditions. The solution of this equation (u(x, t)=
u0(x−at)) is approximated by the conservative finite difference method

un+1
i =uni −�(uni+1/2−uni−1/2) (2)

where uni is the numerical solution at point (i�x ,n�t ) and �=a�t/�x is the Courant or Courant–
Friedrich–Levy (CFL) number. In the above equation, uni+1/2 and u

n
i−1/2 are the interface numerical

fluxes, depending on values at three selected points, and are denoted, respectively, by u f and ug
(see Figure 1). For example, in Figure 1, the f face, together with its convection velocity V f >0
and neighboring nodes D, U and R, is presented. The variation of a convected property u through,
for example, the boundary face f between two control volumes can be represented by a func-
tional relationship linking values uD, uU and uR, which represent, respectively, the downstream,
the upstream and the remote-upstream locations with respect to the convecting velocity V f at the
interface f (see Figure 1). The same treatment is given by g face. If this functional relation-
ship involving these three positions is prescribed, then the interface numerical flux value can be
determined. To this end, the original variable u is transformed into the normalized variable of
Leonard [18] by

û(x, t)= u(x, t)−unR
unD−unR

The advantage of this normalization is that the interface value û f depends on ûnU and � only, since
ûnD=1 and ûnR=0.

The choice of interface fluxes in Equation (2) determines the particular upwinding scheme for
Equation (1). In this study, these fluxes will be approximated by the ADBQUICKEST scheme
[16] (see also [17], where it appeared for the first time). This scheme can be regarded as a
convective interpolation technique for transient equations. Although there is no shock formation in
Newtonian incompressible fluids, this scheme has been found to be effective in 2D computations
(see [16]). The ADBQUICKEST scheme was proposed in the context of the normalized variable
formulation (NVF) of Leonard and Niknafs [19] while enforcing the total-variation diminishing
(TVD) property (i.e. the norm of gradients of a field cannot be increased by the scheme [20])

Figure 1. Neighboring nodes D, U and R of the f face.
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4 V. G. FERREIRA ET AL.

of Harten [21] and Sweby [22]. Consequently, it satisfies the convection boundedness criterion
(CBC) of Gaskell and Lau [13]. The main idea in the derivation of this scheme was to combine
accuracy and monotonicity, while ensuring flexibility. It can also ensure that the total variation
of the variables does not increase with time; thus, no spurious numerical oscillations (maxima
or minima) are generated. The numerical solution obtained with this scheme can be second- or
third-order accurate in the smooth parts of the solution domain, but only first-order near regions
with large gradients (shock, contact surface).

In summary, the functional relationship of the ADBQUICKEST scheme and its corresponding
flux limiter are as follows:

û f =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2−�)ûU, 0<ûU<a

ûU+ 1
2 (1−�)(1− ûU)− 1

6 (1−�2)(1−2ûU), a�ûU�b

1−�+�ûU, b<ûU<1

ûU elsewhere

(3)

The constants a and b in Equation (3) are given by

a= 2−3�+�2

7−9�+2�2
and b= −4+3�+�2

−5+3�+2�2

Figure 2 shows the ADBQUICKEST scheme in the normalized variable diagram (ûU− û f plane).
The corresponding flux limited function for the ADBQUICKEST scheme is derived as follow.

First, Equation (3) is written in terms of the normalized variable as

û f = ûU+ 1
2�(r f )(1− ûU) (4)

Figure 2. A graph of the normalized variable of û f for QUICKEST scheme (dotted) and
ADBQUICKEST scheme with �=0.5 (solid).
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In terms of the unnormalized variable, Equation (4) can be written as

u f =uU+ 1
2�(r f )(uD−uU) (5)

where � is the so-called flux limiter that determines the level of antidiffusive flux, and r f (a sensor)
is the ratio of upstream to downstream (consecutive) gradients

r f = (�u/�x)g
(�u/�x) f

(6)

which for uniform meshes can be rewritten as

r f = uU−uR
uD−uU

(7)

In terms of the normalized variable, this ratio can be expressed as

r f = ûU
1− ûU

(8)

From Equations (3), (4), and (8), we deduce the flux limiter for the QUICKEST adaptative scheme

�(r f )=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2r f , 0<r f <p

2+�2−3�+(1−�2)r f
3−3�

, p�r f �q

2, r f >q

0, r f <0

(9)

where

p= �−2

�−5
and q= �+4

�+1

According to Equations (5) and (9), the ADBQUICKEST is adaptative in the sense that flux
approximation is set depending on the smoothness of the solution.

The flux limiter (9) can be also written, in a more widely used notation (see, e.g. [20]), as

�(r f )=max

{
0,min

[
2r f ,

2+�2−3�+(1−�2)r f
3−3�

,2

]}

Within the Sweby TVD region, the plot of the flux limiter (9), for several values of �, is presented
in Figure 3. Note that for all values of the parameter �, the flux limiter passes through the point
(1,1) in the TVD region, which is the necessary and sufficient condition for second-order accuracy
away from extrema (see [22]) and corresponds to point (0.5,0.75–0.25�) in the NVD of Leonard
[18] (see CBC region in [13, 20]). One can note that when the parameter � tends to 0, the flux
(3) passes through the point (0.5,0.75) in the NVD region, which is the necessary and sufficient
condition for second-order accuracy and corresponds to point (1,1) in the Sweby TVD region.
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Figure 3. Flux limiter of the ADBQUICKEST scheme in the Sweby TVD region for
several values of Courant number �.

3. NUMERICAL TEST PROBLEMS

In this section, some numerical tests are performed to demonstrate the flexibility and robustness
of the ADBQUICKEST scheme described in the previous section.

The ADBQUICKEST scheme has the advantage of being a bounded version of the QUICKEST.
Besides, an important issue in using this technique is the intrinsic nature of the Courant number �,
which gives flexibility to users. In the simulation of 1D problems with or without discontinuities,
smaller Courant numbers are usually used, typically in the range of 0.5–0.8. In the simulation
of 2D and 3D fluid flow problems, the Courant number is automatically set by the numerical
procedures, that is, this parameter is calculated according to the local flow without need of action
taken from the user.

All the computations to follow were carried out with the aid of a PC computer with AMD Athlon
64 X2 2.22GHz processor available at the High Performance Computing Laboratory (LCAD) of
the Institute of Mathematics and Computer Sciences—University of São Paulo (ICMC-USP). We
first solve the problem of advection of scalars. We then consider the 1D viscous Burgers equation
and shock tube problems. Following on from these, we solve the full 2D and axisymmetric Navier–
Stokes equations describing the flow of an incompressible Newtonian (or generalized Newtonian)
fluid. Finally, we performed direct numerical simulations of the collapse of fluid columns. These
problems appear frequently in fluid dynamics studies and are described/simulated in the following
subsections.

For simplicity, for all calculations we used first-order Euler forward differences for temporal
discretization, except for the fully developed flow in a channel at Re=500 described in
Section 3.4.1, where we used the Crank–Nicolson implicit method.

3.1. Linear advection equation

One of the simplest hyperbolic systems arising from the conservation laws is the scalar linear
advection equation (1), describing the advection or transport of the quantity u along the x-axis with

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
DOI: 10.1002/fld



ASSESSMENT OF A HIGH-ORDER FINITE DIFFERENCE UPWIND SCHEME 7

uniform velocity a=1. This equation is supplemented with the four initial conditions presented in
the following tests.

3.1.1. Non-smooth initial distribution (see [23]). In this first test case, on the domain [−1,1], we
solve (1) with u0 given by

u0(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x sin

(
3�x2

2

)
, −1�x�− 1

3

|sin(2�x)|, |x |< 1
3

2x−1− 1
6 sin(3�x),

1
3�x�1

(10)

This problem was run on a grid of 200 computational cells with a Courant number of 0.8 and
until a final time of t=1.0. Figure 4 presents the exact solution and the numerical results. One
can clearly observe from this figure that the ADBQUICKEST scheme produces accurate results
over the whole domain, capturing the shocks very well indeed.

Figure 5 presents the solution errors, using a Courant number of 0.8 and final time of t=1.0
for all cases, in several norms for different mesh sizes. It can also be observed that, for this highly
discontinuous problem, the order of the accuracy of the ADBQUICKEST scheme is, as expected,
only around unity (due to sharp fronts of the advected variable). This observation is in good overall
agreement with those obtained by Titarev and Toro [24].

3.1.2. Smooth initial distribution (see [25]). This test is used to compare the ADBQUICKEST, with
the well-known CUBISTA [15], WACEB [14] and SMART [13] schemes, applied to Equation (1),
on the domain [−�,�], with u0(x)=sin(�x). Using these four bounded upwind schemes, the
numerical solutions are carried out with increasing resolution up to a mesh of 320 cells. We have

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

u

X

Exact
Present Work

Figure 4. Computed (present work) solution with 200 cells and analytic (exact) solution
for the linear advection equation using the initial data (10).
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Figure 5. The error in the solution of linear advection equation (1) and (10).

Table I. Convergence test: L1, L2 and L∞ errors and convergence-order estimates for several
schemes using u(x,0)=sin(x), −��x��.

Scheme N L1 error L1 order L2 error L2 order L∞ error L∞ order

ADBQUICKEST 20 0.2736e−1 — 0.3182e−1 — 0.5287e−1 —
40 0.7997e−2 1.775 0.1121e−1 1.505 0.2580e−1 1.092
80 0.2521e−2 1.665 0.4532e−2 1.306 0.1200e−1 1.047

160 0.7952e−3 1.664 0.1821e−2 1.315 0.6231e−2 0.945
320 0.2467e−3 1.688 0.7394e−3 1.300 0.2920e−2 1.093

CUBISTA 20 0.3728e−1 — 0.4109e−1 — 0.6456e−1 —
40 0.1151e−1 1.695 0.1539e−1 1.417 0.3321e−1 0.937
80 0.3877e−2 1.582 0.6464e−2 1.250 0.1804e−1 0.880
160 0.1233e−2 1.652 0.2599e−2 1.314 0.9092e−2 0.988
320 0.4903e−3 1.688 0.1999e−2 1.241 0.4460e−2 1.027

WACEB 20 0.2855e−1 — 0.3198e−1 — 0.5016e−1 —
40 0.8756e−2 1.705 0.1139e−1 1.489 0.2287e−1 1.133
80 0.2762e−2 1.665 0.4318e−2 1.402 0.1250e−1 0.871

160 0.8811e−3 1.648 0.1663e−2 1.377 0.7031e−2 0.830
320 0.2852e−3 1.627 0.7534e−3 1.142 0.3650e−2 0.946

SMART 20 0.1678e−1 — 0.2070e−1 — 0.6662e−1 —
40 0.6516e−2 1.365 0.1027e−1 1.021 0.3493e−1 0.931
80 0.2368e−2 1.460 0.4544e−2 1.176 0.1655e−1 1.078

160 0.8069e−3 1.553 0.1758e−2 1.370 0.9482e−2 0.804
320 0.3050e−3 1.403 0.7621e−3 1.205 0.4990e−2 0.926

shown in Table I the L1, L2 and L∞ error norms, as well as the accuracy estimates, of the computed
solutions using �=0.5. From this table, the numerical data indicate that, on these norms, the
ADBQUICKEST scheme converges at a rate higher than that of CUBISTA, WACEB and SMART

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
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ASSESSMENT OF A HIGH-ORDER FINITE DIFFERENCE UPWIND SCHEME 9

schemes. Particularly, it is seen from L1 error that the ADBQUICKEST shows slightly less than
second-order accuracy.

3.1.3. Very flat initial distribution (see [26]). Here we presents a similar convergence study to
that given in the previous test, with the initial distributions u0(x)=sin4(�x). As commented by
Balsara and Shu [26], these initial conditions are very flat at each maxima; that is, the first three
derivatives are zero there. For this reason, Rogerson and Melburg [27] (see also results obtained
with WENO scheme by Herrmann et al. [25]) found that ENO-type schemes suffer from a dramatic
reduction in accuracy for this case. Table II shows the errors as well as the accuracy estimates
for ADBQUICKEST, CUBISTA, WACEB and SMART schemes. One can see from this table
that, on L1 error, the ADBQUICKEST scheme has retained second-order accuracy for this profile.
It can also be seen, in comparison with the first test case, the improvement in accuracy from
first- to second-order accuracy and the improvement beyond second order of the ADBQUICKEST
scheme—in this test, because of lack of severe gradients.

3.1.4. W-shape initial distribution (see [28]). In order to test the behavior of the present upwind
scheme on a rather stringent problem, we simulated a moving W-shape problem proposed by Wei
and Gu [28], i.e. Equation (1) with a=1 and the initial condition given by

u0(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0�x�0.2

4x− 3
5 , 0.2<x�0.4

−4x+ 13
5 , 0.4<x�0.6

1, 0.6<x�0.8

0 otherwise

(11)

This problem has the so-called contact discontinuities [29] that are well known to be difficult to
advect [28, 29]. The simulation of this problem is performed on a mesh of 200 computational cells,
to a time of t=1.0 and with a Courant number of 0.8. The exact solution and the numerical results
obtained with the ADBQUICKEST scheme are presented in Figure 6. One can see from this figure
that, in general, the peaks in the advected profile are accurately captured by the ADBQUICKEST
scheme.

3.2. Viscous Burgers equation

The performance of the ADBQUICKEST scheme is now examined by applying it to the 1D
non-linear viscous Burgers equation

�u
�t

+ �
�x

(
u2

2

)
=�

�2u
�x2

, 0�x�1, t>0 (12)

where u=u(x, t) is the dependent variable, resembling the flow velocity in an incompressible
fluid and � is the ‘viscosity’ coefficient (constant). It is well known that for �>0, the viscosity
term produces smooth solutions and the energy of the system dissipates smoothly. For �→0,
discontinuities (shocks) can develop in the solution, even for prescribed smooth initial data.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
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10 V. G. FERREIRA ET AL.

Table II. Convergence test: L1, L2 and L∞ errors and convergence-order estimates for several
schemes using u(x,0)=sin4(�x), −2�x�2.

Scheme N L1 error L1 order L2 error L2 order L∞ error L∞ order

ADBQUICKEST 20 2.072e−1 — 2.111e−1 — 2.486e−1 —
40 4.722e−2 2.133 5.433e−2 1.958 8.409e−2 1.564
80 1.139e−2 2.052 1.439e−2 1.917 2.994e−2 1.490

160 2.368e−3 2.266 3.998e−3 1.848 1.057e−2 1.502
320 5.269e−4 2.168 1.123e−3 1.832 3.744e−3 1.497

CUBISTA 20 2.138e−1 — 2.197e−1 — 2.588e−1 —
40 5.665e−2 1.916 6.148e−2 1.837 9.408e−2 1.450
80 1.564e−2 1.857 1.937e−2 1.666 3.597e−2 1.387
160 4.404e−3 1.828 6.213e−3 1.640 1.384e−2 1.378
320 1.125e−3 1.968 1.935e−3 1.683 5.247e−3 1.399

WACEB 20 2.097e−1 — 2.144e−1 — 2.525e−1 —
40 4.539e−2 2.208 5.373e−2 1.996 8.423e−2 1.584
80 1.212e−2 1.905 1.557e−2 1.787 3.102e−2 1.441

160 3.257e−3 1.896 4.712e−3 1.724 1.120e−2 1.469
320 8.725e−4 1.900 1.399e−3 1.752 4.016e−3 1.479

SMART 20 2.036e−1 — 2.105e−1 — 2.412e−1 —
40 3.832e−2 2.409 4.341e−2 2.278 8.349e−2 1.530
80 8.293e−3 2.208 9.949e−3 2.125 2.977e−2 1.488

160 2.104e−3 1.978 2.525e−3 1.978 1.049e−2 1.505
320 5.859e−4 1.844 7.736e−4 1.706 3.646e−3 1.525

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

u

X

Exact
Present Work

Figure 6. Computed (present work) solution with 200 cells and analytic (exact) solution for the linear
advection equation (1) using the initial data (11).
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ASSESSMENT OF A HIGH-ORDER FINITE DIFFERENCE UPWIND SCHEME 11

Burgers equation serves as a good model (combining non-linear advection and linear diffu-
sion) for understanding shock formation and turbulence (see, for instance, [30]). We consider
Equation (12) supplemented with the initial condition specified by

u(x,0)=sin(2�x)

and the boundary conditions

u(0, t)=u(1, t)=0

In order to numerically solve this initial value problem, a mesh size of 500 computational cells
(the method suffers from substantial numerical instability when compared with results on coarser
meshes) and a time increment of 0.001 s were used. The ADBQUICKEST scheme was applied
with a Courant number of 0.5. Figure 7 displays the performance of the computed solutions using
�=0.01, 0.001, and 0.0001 at five final times t=0.0,0.1,0.2,0.3,0.4,0.5, given, respectively,
the number of time steps (Nt) 0,100,200,300,400, and 500. In particular, it can be observed
from Figure 7(c) that the formation of a shock appears at t=0.5 and that the performance of the
ADBQUICKEST scheme in reproducing this discontinuity (without producing spurious oscilla-
tions) is very good. Note, also, that the profiles are fully symmetrical about the shock position,
which is a desirable feature in a numerical algorithm [26].

3.3. Inviscid Euler equations

In contrast to the preceding test cases, ADBQUICKEST is now applied to more difficult class
of problems: hyperbolic systems and in particular shock tube problems resulting in flows with
complex structures. The shock tube is an example of a classical 1D compressible flow of an ideal
gas and is often used as a test for numerical methods. It consists of a tube filled with gas and
separated by a membrane. The state of the gas on the left side of the membrane is different from
that on the right (Riemann problem [31]). This results in a discontinuous initial distribution. When
the membrane is broken, a complex wave interaction is initiated. The shock tube problem has
been used extensively in the literature as a validation test case for high resolution schemes, see,
for example, [24, 29, 32] and references therein. The hyperbolic conservation law that models the
shock tube problem is the Euler system for 1D gas dynamics, and it takes the form

�u
�t

+ �f(u)

�x
=0 (13)

where u=(�,�u,E)T is the vector of conserved variables and f(u) is the flux function vector
(�u,�u2+ p,u(E+ p))T. The variables �, u, �u, E , p are the density, the velocity, the momentum,
the total energy and the pressure, respectively. In addition, we require the equation of state for the
pressure p=(�−1)(E− 1

2�u
2), where �=1.4 is the ratio of specific heats [23].

3.3.1. Shu–Osher shock tube. The first selected test case, Equation (13) with −1�x�3, is the
Shu–Osher problem [33], a standard shock/turbulence interaction model that describes an acoustic
wave interacting with a sinusoidal density disturbance (see [24, 26, 34, 35]). This problem provides
a good test for examining the performance of high-order upwind schemes because it involves a

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
DOI: 10.1002/fld



12 V. G. FERREIRA ET AL.

(a)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u

X

t=0.0
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5

(b)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u

X

t=0.0
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5

(c)

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

u

X

t=0.0
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5

Figure 7. Results for Burgers equation: (a) �=0.01; (b) �=0.001; and (c) �=0.0001.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
DOI: 10.1002/fld



ASSESSMENT OF A HIGH-ORDER FINITE DIFFERENCE UPWIND SCHEME 13

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1 -0.5  0  0.5  1  1.5  2  2.5  3

de
ns

ity

X

Reference
Present Work

Figure 8. Density distribution for Shu–Osher shock tube problem at t=1.0 computed (symbol) with 400
computational cells using the ADBQUICKEST scheme.

combination of smooth profiles and discontinuities and exhibits an amplification of an acoustic
wave behind a shock. The distribution is initialized as

(�,u, p)T=
{

(3.86,2.63,10.33)T, x<−0.8

(1+0.2sin(5x),0,1)T, x�−0.8

This experiment was run by using a uniform mesh of 400 computational cells (�t =0.0166) at a
simulation time of t=1.0 and for a Courant number of �=0.6. Depicted in Figure 8 are the reference
solution for density (obtained by running the one-sided first-order upwind scheme on a grid
consisting of 1600 computational cells) and numerical results (obtained by the ADBQUICKEST
scheme). It can be seen from this figure that the numerical solution converged to the reference
calculation (the continuous line) and accurately resolved the shock and the waves behind the
shock—especially near x=2.0. Figure 9 shows a close-up of the reference solution and numerical
solution behind the shock. One can see from this figure that the peaks are relatively well resolved
(free from oscillations) by the ADBQUICKEST scheme. It is interesting to note that the numerical
results obtained here were comparable to the solution reported by Yang [32] using 400 cells (the
same number as the ADBQUICKEST scheme), a Courant number of �=0.8 and a fourth-order
modification of the ENO scheme.

3.3.2. Modified Shu–Osher shock tube. The second problem is a modified shock/turbulence inter-
action, a variation of the Shu–Osher shock tube problem, proposed by Titarev and Toro [24]. It
involves Equation (13) on −5�x�5 with initial conditions given by

(�,u, p)T=
{

(1.515695,0.523346,1.80500)T, x<−4.5

(1+0.1sin(20�x),0,1)T, x�4.5
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Figure 9. Close-up of the solutions in Figure 8 for 1.6�x�2.8.
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Figure 10. Density distribution for modified Shu–Osher shock tube problem at t=5.0 computed (symbol)
with 12 500 computational cells.

Figures 10 and 11 present the reference solution (given by a continuous line and obtained by
running the one-sided first-order upwind scheme on a fine grid consisting of 20 000 computational
cells) and the numerical results for the density distribution. The numerical results are produced by
the ADBQUICKEST scheme on uniform meshes consisting of 12 500 and 18 500 computational
cells, at output t=5.0 and for a Courant number of �=0.2. For this numerical test, one can see
that the ADBQUICKEST scheme on the fine mesh (Figure 11) produces an accurate solution,
which is very close to the reference solution.
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Figure 11. Density distribution for modified Shu–Osher shock tube problem at t=5.0 computed (symbol)
with 18 500 computational cells.

3.4. 2D and axisymmetric incompressible Navier–Stokes equations

We now assess the performance/applicability of the ADBQUICKEST scheme to solve time-
dependent incompressible Navier–Stokes equations. The unsteady flow of an incompressible
viscous isothermal Newtonian/non-Newtonian fluid of constant density � is modelled by the
momentum and continuity equations

�u
�t

= − 1

r	

�(r	uu)

�r
− �(uv)

�z
− �p

�r
+ 
(q)

Re

�
�z

(
�u
�z

− �v

�r

)

+�
1

Re

[
2
�u
�r

�
(q)

�r
+

(
�u
�z

+ �v

�r

)
�
(q)

�z

]
(14)

�v

�t
= − 1

r	

�(r	uv)

�r
− �(vv)

�z
− �p

�z
− 
(q)

Re

1

r	

�
�r

(
r	

(
�u
�z

− �v

�r

))

+�
1

Re

[
2
�v

�z
�
(q)

�z
+

(
�u
�z

+ �v

�r

)
�
(q)

�r

]
(15)

1

r	

�(r	u)

�r
+ �v

�z
=0 (16)

where t is the time, u=u(r, z, t) and v=v(r, z, t) are, respectively, the components in the r and z
directions of the local velocity vector field of the fluid; p is the scalar pressure field divided by the
density. The non-dimensional parameter Re=�U0L0/
 denotes the associated Reynolds number,
in which U0 is a characteristic velocity scale, L0 is a length scale, and 
 is the kinematic molecular
viscosity coefficient (constant).
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The parameter 	 in Equations (14)–(16) is used to specify the coordinate system, namely when
	=0, plane Cartesian coordinates are considered (r is to be interpreted as x and z as y) and
when 	=1, cylindrical polar coordinates are assumed. The parameter � and the function 
(q) in
Equations (14) and (15) are used to specify Newtonian or non-Newtonian flows: when 
(q)=1
and �=0, a Newtonian flow with 
=
0 is assumed; when �=1 and 
(q) is defined by the cross
model (see [36])


(q)=
∞+ 
0−
∞
1+(Kq)M

(17)

with deformation rate q given by (see [37])

q(r, z, t)=
[
2

(
�u
�r

)2

+2

(
�v

�z

)2

+2
(u
r

)2+
(

�u
�z

+ �v

�r

)2
]1/2

(18)

a non-Newtonian (to be more precise, a generalized Newtonian) flow is considered. In Equation (17)

0 and 
∞ (constants) are the asymptotic limits of the viscosity at low (q→0) and at high (q→∞)
shear rates, respectively. The parameters K and M are positive material constants that determine
how the viscosity changes with q between these two asymptotic values (see [37]).

3.4.1. Transient Poiseuille flow. This problem involves the unsteady 2D flow between two parallel
stationary infinite plates (channel), placed at y=0.0m and y= L=1.0m. The equations that model
this problem are (14)–(16) with 	=0, �=0, 
(q)=1, 
=
0 and K =0 (2D Newtonian case).
Initially the fluid is driven by a constant pressure gradient, gradually it flows through the channel
and, finally, it arrives at a steady state. The Reynolds number considered here was Re=0.01, with
the viscosity 
=
0=100kg/(ms) and velocity scale U0=1.0m/s. In order to be able to compare
with the analytic solution, the no-slip condition was applied at solid walls. The analytic solution
for this flow, obtained by application of Laplace transforms (see [38, 39]), is

u(x, y, t)=−4y(y−1)− 32

�3
∞∑
n=0

(2n+1)3 sin(�y(2n+1))exp(−Re−1(2n+1)2�2t) (19)

where x is the coordinate in the streamwise direction and y is the coordinate in the direction
normal to the channel. The calculations were carried out using the Freeflow code of Castelo
et al. [40], which was appropriately modified to incorporate the ADBQUICKEST scheme. At the
inlet section, the initial condition was obtained from (19) by setting t=0. In the simulation, the
computational domain was taken to be 5L×L , which was discretized into a 100×20 uniform
cells (�x =�y =0.05m). Figure 12 depicts a comparison between the transient numerical velocity
profiles u=u(y, t) at the x=�x of the channel and the analytic solution (19) (convergence required,
at most, one thousand terms in the series). It can be seen from this figure that the simulation results
are fairly close to the exact solutions except for the initial transient stage (for example, t=0.0005).
These differences, however, diminish with time. Moreover, agreement can be improved by using
a finer mesh.

In order to test the second-order convergence of the ADBQUICKEST scheme when combined
with the Crank–Nicolson implicit method, we consider the fully developed flow described above
at Re=500 and simulation time t=15. Table III shows the convergence study in the L1, L2, and
L∞ norms. One can see from this table that second-order convergence rate is practically achieved
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Figure 12. Comparison between numerical (stars) and analytic (squares)
solutions for transient Poiseuille flow.

Table III. Convergence study of the ADBQUICKEST scheme, associated with the Crank–Nicolson method,
as applied to the channel flow at Re=500 and output time t=15.

Mesh L1 error L1 order L2 error L2 order L∞ error L∞ order

100×20 1.4352e−3 — 1.1680e−3 — 1.9810e−3 —
200×40 2.6539e−4 1.975 2.9797e−4 1.970 5.5940e−4 1.824
400×80 6.6734e−5 1.992 7.4897e−5 1.992 1.4791e−4 1.919

when we used the combination of the ADBQUICKEST and Crank–Nicolson implicit schemes. A
plausible explanation for the estimated convergence rate to be slightly below the expected value
of 2 is that the hybrid (i.e. first-order upwind/CD) scheme is applied at cells adjacent to the rigid
boundaries.

3.4.2. Jet plunging into a fluid at rest. This problem, an important early experiment by Taylor [41],
consists of a jet flowing vertically into a box containing the same fluid at rest. The calculations were
carried out using the axisymmetric GENSMAC code of Tomé et al. [42], which was appropriately
modified to include the ADBQUICKEST scheme. With this new version of the code, we solved
the full Navier–Stokes equations (14)–(16) with 	=1, 
(q)=1, 
=
0 and �=0 (axisymmetric
Newtonian case). The no-slip condition is applied on the box walls. Figure 13 displays two
snapshots of this jet flow simulation and Taylor’s experiment for Re=200. As one can see from
this figure, there is qualitative agreement between the numerical results and the experiment of
Taylor. In particular, in case (c) of this figure, the jet reaches the bottom forming an apparently
toroidal structure. It is interesting to observe at this point that Tomé et al. [42, Figure 9, p. 458]
also simulated this free surface flow by using second-order CD to approximate the advection terms:
their numerical result, however, failed to capture this feature of the complicated flow structure.
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Figure 13. Jet plunging into a fluid at rest, using Re=200 and two different times: (a) 3D view of
the numerical simulation at t=40; (b) Taylor’s experiment; (c) 3D view of the numerical simulation at

t=100; and (d) Taylor’s experiment.

3.4.3. Generalized Newtonian fluid flow. Another important test is the flow of a generalized fluid
in a straight pipe of circular cross section, radius R=1.0m and length L=5R, with entry and exit
sections at z=0.0 and 10.0m, respectively. The Reynolds number considered here is Re=U0R/
0,
whereU0 is the averaged velocity, defined as the volumetric flow rate divided by the cross-sectional
area, that is,

U0= 1

�R2

∫ 2�

0

∫ R

0
v(r)r dr d� (20)

The analytic solution v=v(r) in Equation (20) is obtained by assuming that, in the z direction, the
flow is completely developed and the pressure gradient is known. By applying these assumptions in
dimensional form to Equations (14)–(16), with �=1 and 
(q) given by Equation (17) (axisymmetric
generalized Newtonian case) and by imposing boundary conditions, axisymmetry at the center of
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the tube and no-slip velocity at the wall, we obtain

�
�r

(

(q)

�v

�r

)
+ 1

r

(q)

�v

�r
= �p

�z
,

�v

�r

∣∣∣∣
r=0

=0, v|r=R =0 (21)

where, from the dimensional equation (18), q=|�v/�r |. This boundary value problem is solved
as follows. Firstly, we solve the problem

�Z
�r

+ Z

r
=�p, Z(0)=0 (22)

where Z =
(q)�v/�r and �p=�p/�z. The solution of this initial value problem is Z(r)=�p/2r .
Secondly, with 
(q) given by the cross model, Equation (17), we solve the non-linear equation⎡

⎢⎢⎢⎣
∞+ 
0−
∞

1+
(
K

∣∣∣∣�v

�r

∣∣∣∣
)M

⎤
⎥⎥⎥⎦ �v

�r
= Z(r) (23)

for �v/�r . Finally, we solve the problem

�v

�r
= f (r), v(R)=0 (24)

for v(r), where f (r) is an implicit solution of �v/�r defined from Equation (21).
By considering, for instance, the pressure gradient �p=−0.50m/s2 and the material parame-

ters M=0.50, 
0=1.820kg/(ms), 
∞ =0.00kg/(ms), and K =1.5s, we derive, using MAPLE®

software, the following analytic velocity vector field u=(0,v(r))T, with v(r) given by

v(r) = −0.0686813187r2−0.004717123533r3−0.000544686509r2(r(75r+1456))1/2

−0.002643545188r(r(75r+1456))1/2+0.07698003595(r(75r+1456))1/2

−6.471111116ln(8.66025404r+84.0621992+(r(75r+1456))1/2)

+28.77589119 (25)

Integrating Equation (20), with v(r) given by Equation (25), we obtain the desirable input
velocity scale as U0=0.05131576119m/s. Once again, the calculations were carried out using the
GENSMAC code [42], appropriately modified to include the ADBQUICKEST scheme.

The numerical solutions corresponding to four different uniform meshes consisting of 5×25
(�r =�z=0.2m) , 10×50 (�r =�z=0.1m) , 20×100 (�r =�z=0.05m) , and 40×200 (�r =�z=
0.025m) computational cells in the (r, z) directions are compared at the non-dimensional time
t=30. The numerical results for these four meshes have been obtained by imposing, at the inflow
boundary, the analytic velocity profile (Equation (25)) (plane and parabolic profiles were also
employed yielding similar results, but the CPU time increased considerably).

Figure 14 depicts comparisons, at the cross-section given by z=0.50m, of the non-dimensional
velocity profile v=v(r) obtained on these meshes together with the non-dimensional non-
Newtonian analytic solution (Equation (25)). In this figure, for simple comparison, the Newtonian
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Figure 14. A comparison between of the numerical solutions, on four different grids, and the Newtonian
and generalized Newtonian analytic solutions.

Table IV. Normalized L1 errors in the v velocity.

Mesh L1 error

5×25 0.01107202080
10×50 0.00348490517
20×100 0.00347384717
40×200 0.00340860191

analytic solution is also presented. From this figure, it is seen that, during grid and time-step
refinement, little change in the numerical v=v(r) profiles is observed, indicating convergence
of the numerical solution on four meshes. Furthermore, the results obtained with the present
numerical procedure are in good agreement with the derived generalized Newtonian analytic
solution (Equation (25)).

A more quantitative assessment of the level of agreement between the calculated solutions on the
four meshes and the generalized Newtonian theoretical solution (Equation (25)) can be obtained
by looking at the normalized error in the L1 norm. This is summarized in Table IV. These results
quantify the observations regarding Figure 14. In particular, the numerical solution on the fine
mesh, 40×200 computational cells, shows a very small error.

Figures 15 and 16 display the non-dimensional numerical solutions on the 40×200 mesh and
analytic results for the deformation rate and viscosity, respectively. These figures illustrate that the
computational simulation using the ADBQUICKEST scheme accurately represents the behavior
of the generalized Newtonian fluid flow in a circular pipe.

3.4.4. Application: direct computation of the collapse of fluid columns. Collapse of fluid columns
(or dam-break flows) are an important practical problem in civil engineering and their prediction
is a required element in the design of a dam and its surrounding environment [43]. This free
surface flow problem was first studied experimentally by Martin and Moyce [44] and then used as
a test bed by developers of the volume-of-fluid (VOF)-based numerical methods (see, for instance,
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Figure 16. Behavior of the viscosity versus radial distance for the numerical and the analytic solutions.

[45, 46]). Later, Koshizuka and Oka [47] repeated the experiment and used it to check their
moving-particle semi-implicit code. Since then, this problem has been investigated numerically by
various researchers (see, for example, [48]), as a benchmark test for free surface flow numerical
methods. Recently, Violeau and Issa [49] used this problem to check the performance of their
gridless smoothed particle hydrodynamics �– turbulence model.

By using the ADBQUICKEST scheme implemented into the 2D and 3D versions of the Freeflow
Navier–Stokes flow solver of Castelo et al. [40], we performed a direct numerical simulation of
this unsteady free surface flow. For this we add, in Equation (15), the gravitational contribution
gz/Fr2, where Fr =U/

√
L|g| is the Froude number. The problem is described as follows.

A rectangular fluid column of a=0.10m wide and b=0.050m high (and in the 3D case
a fluid block of b=0.05m length, a=2b wide and c=2b high) in hydrostatic equilibrium is

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1–26
DOI: 10.1002/fld



22 V. G. FERREIRA ET AL.

Figure 17. Schematic illustration for a 2D collapse of a fluid column.
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Figure 18. Computations and experimental data for the surge front position xmax.

confined between walls. At the beginning, a wall is instantaneously removed and the fluid is
subject to vertical gravity and is free to flow out along a rigid horizontal wall. Figure 17 depicts
this problem in the 2D case. The Reynolds number based on the characteristic length L=b and
the characteristic velocity U =√

L|g| is Re= LU/�=99045.444 (|g|=9.81ms−2). The meshes
used for this problem were 150×75 (�x =�y =0.002m) computational cells in the 2D case and
150×50×75 (�x =�y =�z =0.002m) computational cells in the 3D case. The motion of the fluid
front position xmax versus time, obtained by the 2D and 3D numerical results, was compared with
the experimental data of Koshizuka and Oka [47] and Martin and Moyce [44] in Figure 18. As
shown in this figure, both 2D and 3D calculations agree fairly well with the experimental data,
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Figure 19. Non-dimensional time evolution of the non-dimensional pressure contours and free surface
deformation of a 2D numerical simulation of the partial opening of a sluice gate.

specially in the comparison with the results of Martin and Moyce, providing confidence in the
numerical solutions.

We conclude this paper by presenting the numerical simulation of another type of dam break
flow (see [50]), which corresponds to a strong free surface motion generated by a sluice gate. This
problem is generally used as a model to study flows in hydraulic structures, where the effects of the
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free surface, turbulence fluctuations and pressure distribution are usually required to be determined
(see [51, 52]). The parameters employed in our simulation are the same as that for the collapse of
fluid column. The development of non-dimensional pressure distributions, together with the free
surface deformation at three non-dimensional times, are presented in Figure 19. One can see from
this figure that there is a visible transition to turbulence, at least occurring at scales greater than
the discretization scale.

4. CONCLUSIONS

The high-order upwind ADBQUICKEST finite difference scheme has been successfully used
to solve a variety of complicated advection–diffusion problems, containing discontinuities and
complex structures, namely advection of scalars, shock tube problems, 2D Newtonian flow, axisym-
metric Newtonian/generalized Newtonian flows, and a 3D free surface flow.

The numerical results obtained with the ADBQUICKEST scheme complement those found in
Ferreira et al. [16] and confirm the capability of this high-order upwind scheme to control the
generation of unphysical oscillations in the vicinity of discontinuities.

It is intended that future research will consider: (a) extension of the study to 2D Burgers equation,
2D shock tube problems, and (b) an investigation of the performance of the ADBQUICKEST
scheme for solving 3D turbulent and non-Newtonian incompressible free surface flows. These
should provide a severe test for any high-order upwinding scheme.
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